Developing a pipeline for Genotyping-bysequencing (GBS) of the New Zealand Greenshell[™] Mussel

<u>Rachael Ashby</u>^{1,2}, Rudiger Brauning¹, Tracey van Stijn¹, Hayley Baird¹, John McEwan¹, Chris Brown², Neil Gemmell², and Shannon Clarke¹

¹ AgResearch, Invermay

² University of Otago, Dunedin

The New Zealand Greenshell[™] Mussel

- Economically important species for the NZ aquaculture industry
- Exports of Greenshell[™] Mussels had a revenue of \$211m in 2011
- Current farming methods heavily rely on wild spat collection
- Lifecycle of the mussel has been established
- Cawthron now have a mussel hatchery and is successfully breeding mussels

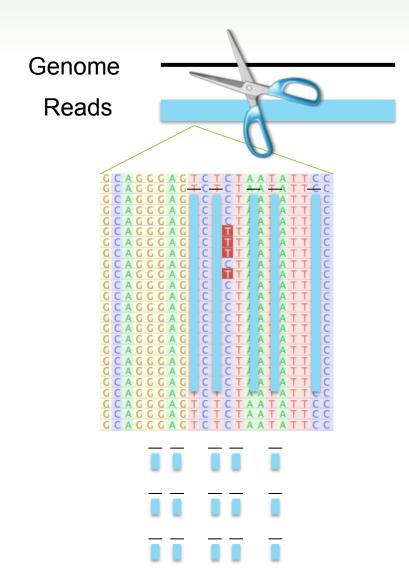
The New Zealand Greenshell[™] Mussel

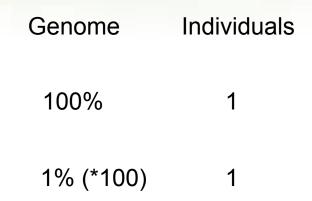
- Next stage is to selectively breed mussels
- Aim to generate a genomic toolbox for the Greenshell[™] Mussel
 - To further understand the genomics of the mussel
 - To aid mussel breeding
- Predicted difficulties:
 - Repeats
 - Heterogeneity e.g., Chilean Mussel 1:25bp SNP rate
- Closest sequenced genomes are the Pacific and Pearl Oysters

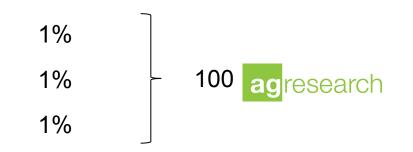
The New Zealand Greenshell[™] Mussel

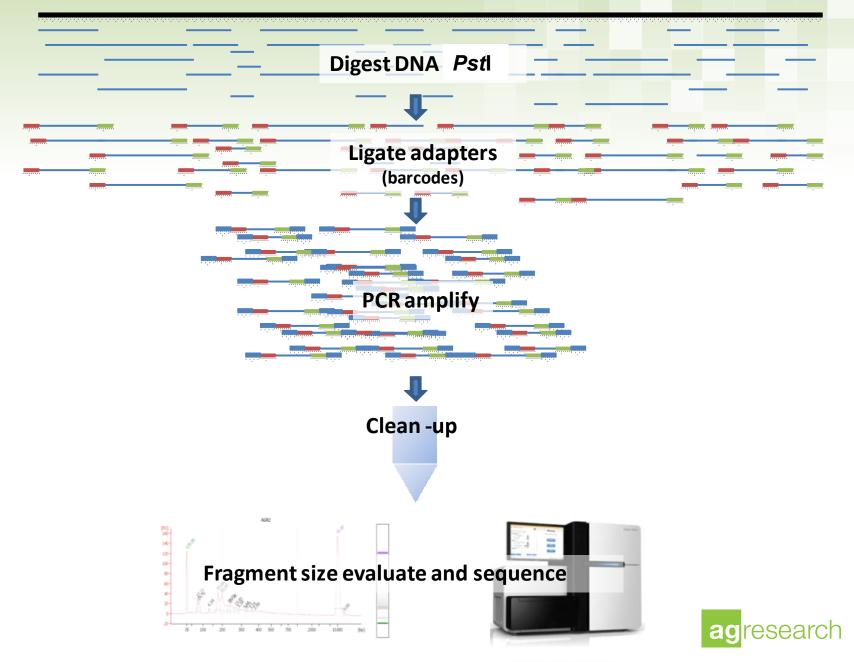
- Transcriptome
 - RNA from mantle, foot, gill and adductor muscle
 - Manuscript in preparation
- V1 draft genome

Num. of Scaffolds	Length of Scaffolds (mb)	Min. Scaffold (bp)	Max. Scaffold (bp)	N50 (bp)	Average Length (bp)	Complete Genes (%)	Partial Genes (%)
332,002	1,159	500	165,912	7,018	3,492	39	77




Next Stage – Developing a GBS Pipeline


- Our aim is to have a high throughput, reproducible and cost effective GBS method.
- Haemolymph from breeding stocks used for sample collection
- Need high quality DNA
- Analysis
 - Genomic selection
 - Genome wide association studies
 - Parentage
 - Linkage disequilibrium



Genotyping-by-Sequencing (GBS)

AACAATGTGCAGGATCGATGCTACGTAGGCAC AACAATGTGCAGGATCGATGCTACGTAGGCAC AACAATGTGCAGGATCGATGCTACGTAGGCAC AACAATGTGCAGGATCGATGCTACGTAGGCAC AACAATGTGCAGGATCGATGCTACGTAGGCAC

AACAATGTGCAGGATCGATGCTACGTACGCAC

...CTGCAGATCGATGCTACGTACGCACNNNNGATCGAGCTAGCTAGCTGCAG...

New species considerations

- Restriction enzyme
 - ApeKI generates larger coverage across genome
 - Pstl reduces complexity generating higher depth of individual SNPs
 - PstI-MspI double digest, combines a rare cutsite (PstI) with a more common cutsite (MspI)
- Reference vs *de novo*?
 - Reference based protocols produce better quality SNPs
 - *De novo* faster and cheaper when a reference is unavailable
- 96 Mussels
 - 95 samples + positive control
 - Samples mix of parents, progeny and unrelated

Results - UNEAK

	Number of SNPs	HWdgm > 0.05	Proportion of missing genotypes	Mean sample depth	Mean self- relatedness
ApeKI	43,097	42,435	0.53	2.54	1.36
Pstl	7,812	7,496	0.53	21.41	1.49
Pstl-Mspl	30,068	29,629	0.56	7.89	1.43

Results – Tassel 5

	Number of SNPs	HWdgm > 0.05	Proportion of missing genotypes	Mean sample depth	Mean self- relatednes s
ApeKI	35,953	33,603	0.39	8.05	1.48
Pstl	14,085	13,158	0.36	51.5	2.25
Pstl-Mspl	19,592	18,633	0.38	19.05	1.75

Mussel GBS Issues

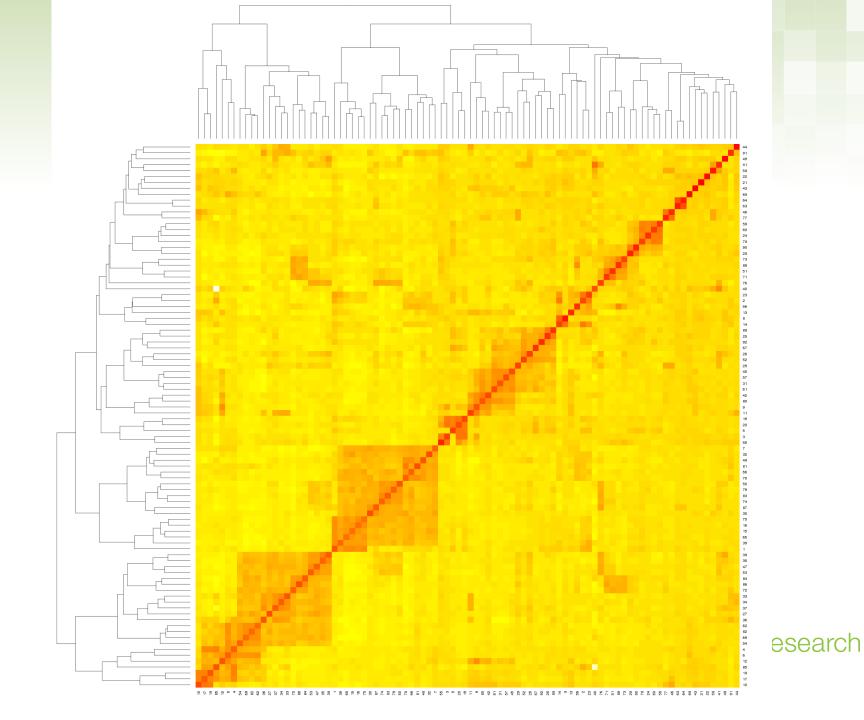
- UNEAK
 - Only looks for 1 SNP in a 64bp read
 - Under calls SNPs
 - 50% of Tags missing across individuals
- Tassel 5
 - Low mapping rates to reference genome
 - Low SNP calling rate
 - High percentage of tags missing across all samples
 - Large variation between the self-relatedness

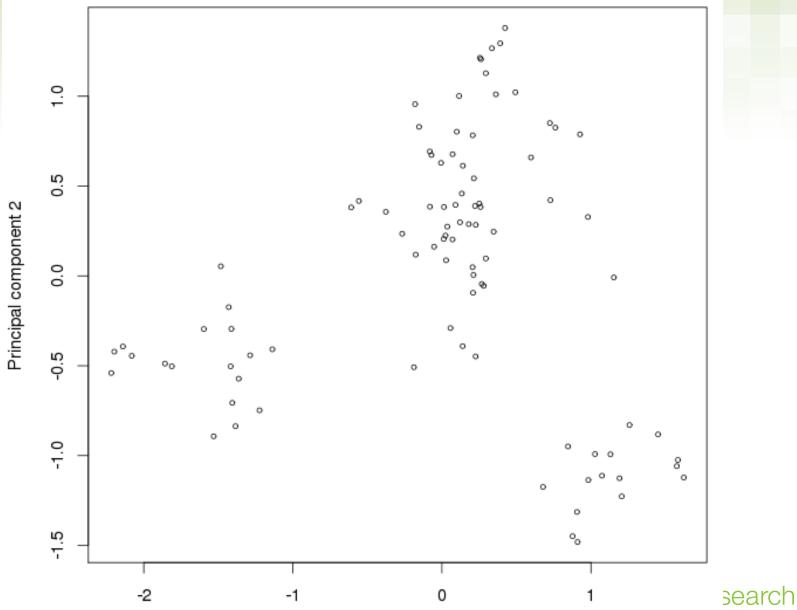
Improving Mussel GBS SNP Calling

- Filter SNPs using KGD
- Improve reference genome
- Try other tools to improve the SNP calling
 - How do we determine which tool is the best?

Dodds et al. BMC Genomics (2015) 16:1047 DOI 10.1186/s12864-015-2252-3

BMC Genomics


METHODOLOGY ARTICLE


Construction of relatedness matrices using genotyping-by-sequencing data

Ken G. Dodds^{1*}, John C. McEwan¹, Rudiger Brauning¹, Rayna M. Anderson¹, Tracey C. van Stijn¹, Theodor Kristjánsson² and Shannon M. Clarke¹

Open Access

Principal component 1

Simulation Overview

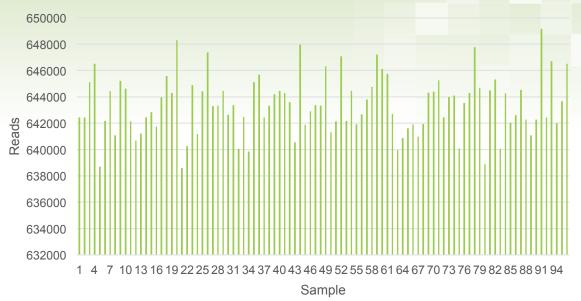
- Simulate GBS data from a well assembled, known reference
- Add SNPs to reference
- Keep reference of the positions of SNPs
- Know the answer before asking the question
- Compare multiple GBS software pipelines to identify most accurate

Simulation Data Generation

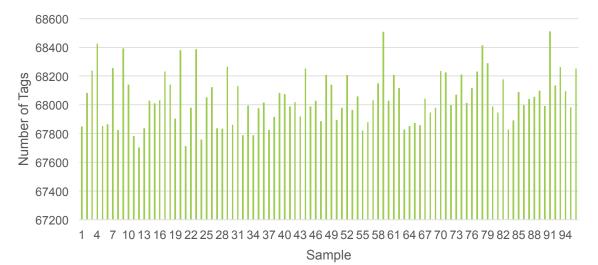
- 1. Read in whole genome
- 2. In silico restriction enzyme digest
- 3. In silico size selection of fragments
- 4. Generate SNP positions using an exponential distribution across reference
 - Currently at a rate of 1/300bp
 - Aim to increase rate to 1/100bp and 1/25bp

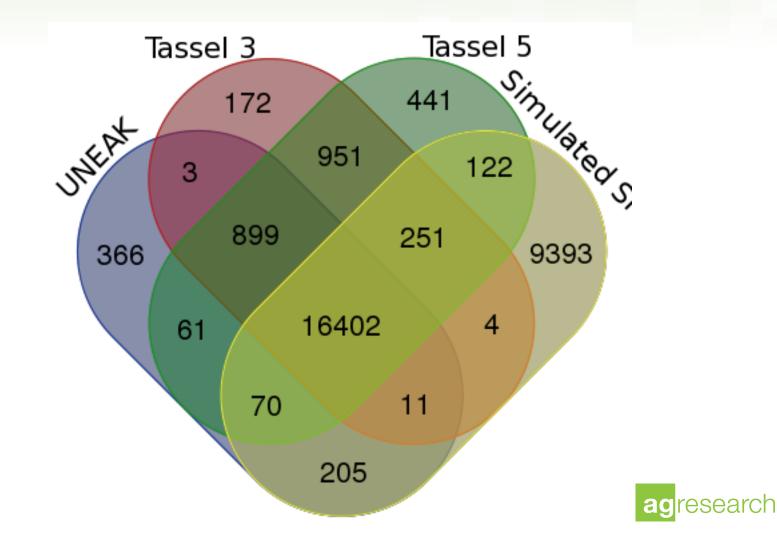
Simulation Data Generation

- 5. Generate Fastq Reads
 - Generate reads for 96 barcodes
 - % barcodes without reads at that site
 - Homozygous, heterozygous reference, homozygous alternate
 - Depth
- 6. Compile Annotation File
 - Chromosome
 - Cut site start and finish position
 - SNP position
 - Reference and Alternate Alleles
 - Allele and read depth for each barcode



Simulation Results


- 61,958,118 fastq reads across all chromosomes and 96 barcodes
- 8,639,933 SNPs in total across a 3Gb genome
- 26,458 seen in reads
- UNEAK identified 61,763,960 to be 'good barcoded reads'



Simulation Results

	Number of SNPs	HWdgm > 0.05	Proportion of missing genotypes	Mean sample depth	Mean self- relatednes s
UNEAK	19,510	19,425	0.28	7.5	1.1
Tassel 3	18,813	18,594	0.28	7.4	1.1
Tassel 5	19,197	19,122	0.28	7.5	1.1

How many SNPs are the same?

Summary

- Compared different restriction enzymes for Mussel GBS
 - ApeKI
 - Pstl
 - PstI-MspI
- Compared *de novo* vs reference tools for SNP calling
- Identified heterozygous undercalling is present in Mussel GBS

Summary

- Developed a pipeline to generate simulated GBS data
- Compared UNEAK, Tassel 3 and Tassel 5 using simulated data
- Tassel 3 and Tassel 5 under calling and miscalling SNPs

Next steps

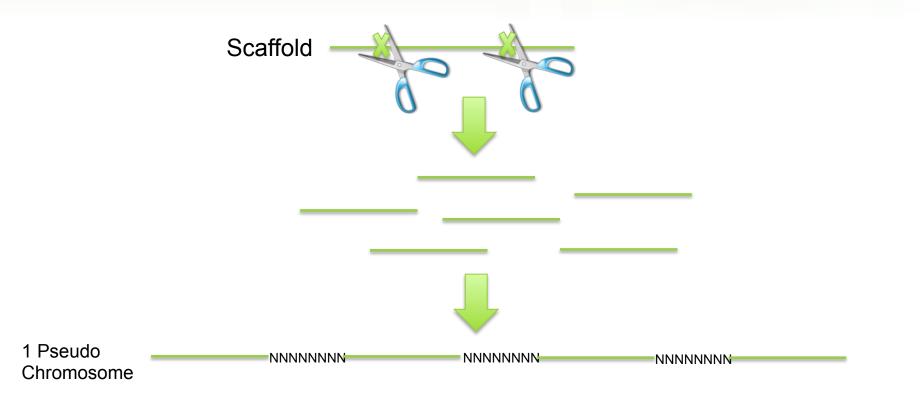
- Run simulated data through other GBS pipelines
 - FreeBayes
 - STACKS
 - Homebrew Pipeline 'Gold Standard' but very slow
- Increase SNP rate to 1/100bp and 1/25bp
- Identify optimal pipeline for GBS SNP calling
- Apply pipeline to real data and compare results

Acknowledgements

- Chris Brown
- Neil Gemmell
- Kim Rutherford
- Otago University Strategic Research Grant -Neil Gemmell and Shannon Clarke

agresearch

- Shannon Clarke
- Rudi Brauning
- Hayley Baird
- Rayna Anderson
- Tracey Van Stijn
- Ken Dodds
- John McEwan
- MBIE Research Grant -Genomics for production and Security (AgResearch)



illumina

In silico Restriction Enzyme Digest – "Chowder Genome"

In silico Restriction Enzyme Digest – "Chowder Genome"

- Smaller genome for mapping
- Speeds up mapping
- Pstl chowder genome 7,130,077 bases
 - 84.13% overall alignment rate against V1
 - 74.98% overall alignment rate against Chowder
- Losing small number of tags, but decreasing time taken for mapping stage

