

The NeSI National Platforms Framework

Michael Uddstrom¹, Nick Jones², Nic Mair³

¹NeSI Platforms Manager, ²NeSI Director, ³NZGL BioIT Manager New Zealand eScience Infrastructure

New Zealand eScience Infrastructure eResearch 2016, Queenstown, New Zealand

2

Outline

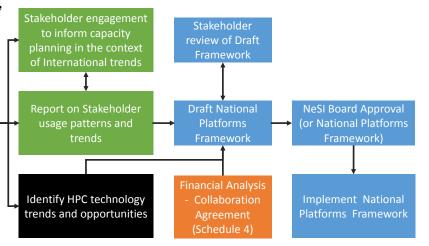
- NeSI.2 on one slide;
- The National Platforms Framework What & Why;
- The Review Process;
- NeSI Platforms: Current Status:
 - Two definitions to avoid confusion...
- Current usage a high level view;
- Planning for the future Researcher & Stakeholder inputs:
 - Some headlines.
- The Draft 2015 National Platforms Framework on one slide.

Context NeSI.2

- New structure: National management, Service Lines, Service Catalogue;
- National governance over platform investments (CapEx + OpEx) the National Platforms Framework (NPF);
- New Access Policy covering all allocations:
 - Merit Project grants receive free access to NeSI HPC Compute & Analytics Services;
 - Investor/Collaborator Projects may run on any NeSI Platform (Optimise fit-for-purpose);
 - Allocation model covers HPC core-hours and Computational Science Team staff.
- Service Catalogue:
 - HPC Compute and Analytics, which delivers platform services to researchers;
 - Consultancy and Training (includes Computational Science Team, Applications Engineers);
 - Data Services (share and fast transfer).
- 60% of the HPC resource is reserved for Investors, 40% for "Merit" access.

Context: National Platforms Framework Review

- This Framework is the high level plan underpinning "nationally coordinated procurement";
- Two relevant Goals to inform the NPF Review:
 - Making it easier to start: Empowering researchers to make effective use of advanced computing capabilities, and
 - Improving time to solution: Enhancing the capabilities available to researchers, and enabling them to address the most challenging problems.
- Four key NeSI Objectives:
 - Support New Zealand's research priorities (NSSI);
 - Increase fit-for-purpose use of national research infrastructure;
 - Make fit-for-purpose investments aligned with sector needs;
 - Enhance national service delivery consistency and performance to position
 <u>NeSI for growth;</u>


National Platforms Framework

- The National Platforms Framework Review is informed by:
 - Analysis of the usage of the existing platforms (science applications, job size, I/O etc.)

Initiate Review

- Responses to a Research User Survey, which considers:
 - » Current usage;
 - » Planned usage (~3 year time frame);
 - » International collaborations.
- HPC technology roadmaps;
- Financial implications for the NeSI platforms investment Fund;
- Stakeholder input and feedback;
- Is reviewed annually;
- Is approved by the NeSI Board Approval;
- Is implemented by the Platforms Manager.

The 2015 Review

- NeSI HPC Platforms are approaching end of life: ٠
 - Foster (UC BlueGene (IBM Power, Linux)), and P7 (IBM Power, Linux & AIX) commissioned in 2011;
 - Pan (UoA iDataPlex (Intel, Linux)), commissioned in 2011;
 - FitzRoy (NIWA P575/P6 (IBM Power, AIX)), commissioned in 2010.
- 2014 National Platform Framework proposes a two HPC Platform environment in the future:
 - Capacity platform at UoA, with Cloud bursting capacity on demand; ____
 - Capability platform at NIWA.
 - A focus on optimisation of fit-for-purpose use of the Platforms:
- NeSI Annual Plan.

Definitions: Capacity & Capability

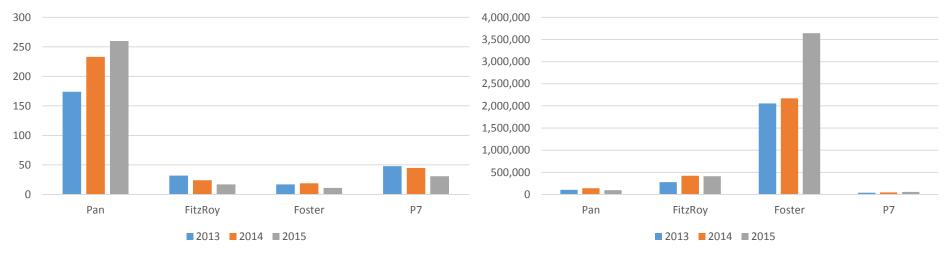
- Capacity (e.g. Pan, P7) Application Domain:
 - Problems that have low inter-processor communication requirements i.e. are loosely / not coupled
 - Can utilise thousands of cores, with near perfect scaling (i.e. Embarrassingly Parallel problems);
- Capability (e.g. FitzRoy, Foster) Application Domain:
 - Large, highly coupled problems, which have high inter-processor / low latency communications requirements, and typically, very high I/O demands;
 - Tightly coupled problems that exhibit poor scaling properties require high performance processors;

HPC Compute 2013 – 15: By Allocation Class

Total Merit, Post Grad & P Development (Core-h) 45.000.000 4.500.000 40,000,000 4,000,000 35.000.000 3.500.000 30,000,000 3,000,000 25,000,000 2,500,000 20,000,000 2,000,000 15,000,000 1,500,000 10,000,000 1,000,000 5,000,000 500,000 0 Ρ7 Pan FitzRov Foster P7 Pan FitzRov Foster 2013 2014 2015 2013 2014 2015 Total 2013 – to date = **224.202.521** Core-h Compute

Total Investor/Collaborator Usage (Core-h)

- 2013 to date = **911** Total Projects
- 60% Institutional (UoA, Landcare, UoO, NIWA, UC) Target


40% for Merit, Post Grad, Proposal Development, Subscription

HPC Compute 2013 – 15: Project Metrics

Total Number of NeSI Projects

- Total Compute 2013 to date = 224,202,521 Core-h
- Total Projects 2013 to date = 911

Looking to the Future: Research Needs for HPC

- The "Research Needs Survey" was used to gather information on:
 - Which research groups are dependent on HPC Services and what type;
 - International collaborations and dependencies (NSSI);
 - The HPC services that will be needed over a 3 5 year time frame to remain internationally competitive:
 - » CPU cores;
 - » Accelerators (GPGPU, MIC, FPGA);
 - » Data storage;
 - » Data Analytics (including HADOOP, SPARK, ...?).
 - The types of Application that they are/will use and the scale;
 - Software codes that could be used in RFP benchmarking;
 - Gaps in NeSI's current service offerings.

Research Needs Survey: Overview

Deceences		Primary Research Domain	Responses	Platform		
Responses:				Pan	FitzRoy	Foster
 Auckland (18) 	1	Biomedical Sciences	5	3		2
• Canterbury (2)	2	Cellular, Molecular and	1			
• Otago (5)		Physiological Biology				
	3	Earth Sciences and Astronomy	19	4	13	1
 Massey (1) 	4	Ecology, Evolution and Behaviour	6	4	1	
• Landcare (1)	5	Economics and Human and Behavioural				
		Sciences				
• NIWA (18)	6	Engineering and Interdisciplinary Sciences	5	5		
• NZGL (1)	7	Humanities				
	8	Mathematical and Information Sciences	3	1		
Note: Not all respondents are using	9	Physics, Chemistry and Biochemistry	7	7		(1)
current platforms.	10	Social Sciences				
		Total	46	24	14	3 + (1)

Headline Responses

- Data Services:
 - Faster methods to transfer large datasets between research groups;
 - Access to, and management of large datasets (e.g. to host reference datasets).
- HPC Compute and Analytics:
 - The big Earth Sciences and Astronomy researchers have a clear view of future needs, e.g.
 - Need for high performance cores and interconnects for tightly coupled codes (not much use yet for GPGPUs or MIC architectures);
 - Very large Core-hour requirements for some planned research projects (O(100M Core-hours) per annum)
 - Large data output and storage (O (1PB) per simulation and the need for multiple simulations.

Headline Responses: Continued

- Researchers in Biomedical Sciences will also need access to large Capability Platform resources
- In some science domains there are major gains to be made by transitioning to codes that can make use of GPGPUs (e.g. Molecular Dynamics codes such as AMBER) – leading to very cost effective HPC services and improved time to solution metrics
- Use of MIC architectures (i.e. Knights Landing) in science codes that deliver performance improvements in time to solution is less clear.
- There is a substantial need for Capacity services the long tail of HPC.
- Data Analytics
 - The need for data analytics, and reduced movement of data (i.e. analytics *in situ*) will be an area of growth in the coming years
 - In part these will be driven by the need to analyse PB scale datasets

Headline Responses: Continued

- Visualisation
 - Little comment but server/GPU based visualisation will be important (i.e. don't move data!).
- Platforms Operations:
 - Easier to transition between the two platforms (user environment / data);
 - Better transparency / management of job queues;
 - Run on "fit-for-purpose" Platforms;
 - Data management.
- Need good planning around decommissioning activities.

Platform Replacement Design Considerations

- Make it easy for users to develop and run research workloads/jobs and apply data analytics tools on either/both platforms (minimise diversity);
- Fit-for-Purpose platforms that meet researcher needs;
- High level of interoperability/commonality of management and monitoring systems;
- Leverage step changes in technology: processors, software environment, storage;
- Transparent management of data on tiers (from Flash \leftrightarrow disk \leftrightarrow tape);
- Fastest time to solution;
- High reliability and availability;
- Minimise Total Cost of Ownership;
- Access to standard "big data" tools (e.g. Hadoop, SPARK)?

Draft National Platforms Framework (2015)

• 2016:

- Decide on the role of NeSI Cloud-Burst services in the context of the Framework;
- Agree Data Services strategy and feed into Platform replacement design;
- Agree and design Data Analytics capabilities / services, and feed into Platform replacement design;
- Develop and issue RFPs for both Capacity and Capability Platforms (i.e. Design and specify solutions that will meet NeSI Goals and Objectives, informed by Researcher Input);
- Analyse RFP responses and select vendor(s).
- 2017:
 - Contracting, installation, acceptance testing, configuration, commissioning, transition to operations, decommission old platforms;
 - Optimize services .
- 2018:
 - Optimize services.

Extra Slides

NeSI.2 Access Policy: Summary

Merit (No cost):

- Highest priority allocations, awards in this class are given priority access to Consultancy
- Projects are required to provide evidence of an existing peer reviewed national or institutional award
- Project allocated to best fit-for-purpose Platform
- Grants up to one year, renewable.

Institution (Cost):

- Access a "block" allocation (Core-h and Consultancy);
- Service Governance by Institution, Technical Assessment by NeSI.

Proposal Development (No cost);

- Fast access, to learn about HPC etc..,
- Small allocation (1000 Core-h), time bound (1 month).

Post Graduate (No cost):

- Available to post-graduate students working on an approved research programme);
- Lowest priority;
- Grants up to one year, renewable.

NOTE: "Merit" Access includes Merit (as defined above), Proposal Development, Post Grad and Subscription usage