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At a Glance

Research issues in Processing of Semi-Stream Data:
Processing of semi-stream data with different arrival rates under
limited memory. For example joining of fast stream of source updates
with a slow disk-based master data in real-time data warehousing.
Processing and load shedding of skewed stream data efficiently.

Existing approach:
Mesh Join (MESHJOIN) is a well known approach in this context.
MESHJOIN does not consider a very common characteristic (skewed
distribution) of the stream data and therefore, both the processing
and load shedding of the stream data can be suboptimal.

Our approach:
We present a generic caching approach that can be used as a
front-stage with any semi-stream join algorithm in order to optimize
the processing of skewed stream data.
we present a novel, selective load shedding technique which sheds
the fraction of the stream that is most expensive to join.
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Introduction

Semi-stream join algorithms join a fast data stream with a
disk-based relation. For example in realtime data warehousing where
a stream of transactions is joined with master data before loading it
into a data warehouse.

The join is used to enrich the stream data with the master data.

A common type of join in this scenario is an equijoin which is
many-to-one type of join between foreign keys in the stream data
and primary key in the master data.

Usually available memory for the join algorithm is not large enough
to hold the whole disk-based master data.

Stream data is normally a skewed (non-uniform) distribution.
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Data arriving from data sources is huge in volume and fast while
access rate of the master data is slow.

Consequently there is a bottleneck in the transformation layer.

The stream data is skewed.

The stream arrival rate can be greater than the service rate of the
join algorithm.
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MESHJOIN

A wellknown algorithm MESHJOIN1 has been introduced in this
area.

Implements many-to-one equijoin which is norm in the scenario of
data warehousing.

Designed for joining a stream S with the disk-based master data R.

Retrieves R sequentially and therefore assumes no index on R.

Can cope with limited memory.

1Polyzotis et al., IEEE Transaction on Knowledge and Data Engineering, July,
2008.
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Components of MESHJOIN
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MESHJOIN Operation
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Issues with MESHJOIN

Skewed distribution is a common characteristic of
real world data e.g. in many markets some
products are bought with higher frequency1.

MESHJOIN makes no assumptions about data
distribution or the organization of the master
data.

Experiments of MESHJOIN have shown that the
algorithm performs worse with skewed data than
with uniform data.

Load shedding approach used in MESHJOIN is
suboptimal.

1Anderson, C., The Long Tail: Why the Future of Business is Selling Less of More.,
Hyperion, 2006.
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Our Optimization Approaches

As a solution we present two optimization approaches.

1 A novel caching approach that works as a generic front-stage for
existing semi-stream join algorithms.

The new front-stage uses a tuple-level rather than a page-level cache.
The front stage significantly improves join service rate for skewed
data.
We tested our front-stage with three different well known
semi-stream join algorithms.
We provide experimental results to demonstrate the benefits of the
approach.

2 A novel load shedding approach.
Contrary to the existing approach our approach sheds the tuples
which are expensive to join.
In our approach load shedding increase the service rate which is not
the case in the existing approach.
We provide experimental data with significant improvement in
service rate.
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Caching Approach

Applied on MESHJOIN (Mesh Join) – renamed with CMESHJOIN
(Cached Mesh Join)
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Caching Approach

Applied on HYBRIDJOIN (Hybrid Join) – renamed with CHYBRIDJOIN
(Cached Hybrid Join)
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Caching Approach

Applied on INLJ (Index Nested Loop Join) – renamed with CINLJ
(Cached Index Nested Loop Join)
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Experimental Evaluation

Setup

Hardware specifications: Core i5, 8GB main memory, 500GB hard
drive

Allocated memory: 1% of R (0.11GB) to 10% of R (1.12GB)

Data set:
Disk-based data

Size of R, 100 million tuples ( 11.2GB)
Size of each tuple, 120 bytes (Similar to MESHJOIN)

Stream data

Size of each tuple, 20 bytes (Similar to MESHJOIN)
Size of each pointer in queue, 4 bytes in CMESHJOIN while 12 bytes
in CHYBRIDJOIN
Based on Zipf’s Law with skew value from 0 to 1

Evaluation metrics: We calculate confidence interval by considering
95% accuracy rate.
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Experimental Evaluation
Service rate vs memory (R≈11.2G, Skew=1)
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Load Shedding Approach

Stream arrival rate

Maximum service rate

for available memory

Service rate

line

Service 

rate
shedding point

A novel and efficient load shedding technique particularly for skewed
semi-stream data.

Contrary to the existing approaches, only sheds those tuples which
are expensive to join.

Uses the existing architecture with minimum overhead.

As a consequence the service rate improves significantly.
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Queue optimization for load shedding
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Conclusions

Existing algorithm MESHJOIN is suboptimal for processing of the
skewed semi-stream data.
The load shedding technique presented in MESHJOIN is inefficient.

We presented the following two major contributions:
Caching

Presented a generic cache module called front-stage.
Uses a tuple level cache.
Tested it with three wellknown algorithms.
Improved the service rate of the existing algorithms.

Load shedding
Presented an intelligent load shedding technique.
The new technique exploits the skew in stream data.
Contrary to the existing MESHJOIN our load shedding approach
improved the service rate.

We performed a sensitivity analysis with respect to various internal
parameters.
We validated our cost model empirically.
Source download:www.cs.auckland.ac.nz/research/groups/serg/j/tkde/
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