
Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Caching and Load Shedding in Semi-Stream Joins
for Skewed Big Data

M. Asif Naeem1, Gerald Weber2, Gillian Dobbie2, Christof Lutteroth2

1Auckland University of Technology, New Zealand
2The University of Auckland, New Zealand

February 9, 2016

eResearch NZ 2016 (Queenstown)

1/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

At a Glance

Research issues in Processing of Semi-Stream Data:
Processing of semi-stream data with different arrival rates under
limited memory. For example joining of fast stream of source updates
with a slow disk-based master data in real-time data warehousing.
Processing and load shedding of skewed stream data efficiently.

Existing approach:
Mesh Join (MESHJOIN) is a well known approach in this context.
MESHJOIN does not consider a very common characteristic (skewed
distribution) of the stream data and therefore, both the processing
and load shedding of the stream data can be suboptimal.

Our approach:
We present a generic caching approach that can be used as a
front-stage with any semi-stream join algorithm in order to optimize
the processing of skewed stream data.
we present a novel, selective load shedding technique which sheds
the fraction of the stream that is most expensive to join.

eResearch NZ 2016 (Queenstown)

2/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

At a Glance

Research issues in Processing of Semi-Stream Data:
Processing of semi-stream data with different arrival rates under
limited memory. For example joining of fast stream of source updates
with a slow disk-based master data in real-time data warehousing.
Processing and load shedding of skewed stream data efficiently.

Existing approach:
Mesh Join (MESHJOIN) is a well known approach in this context.
MESHJOIN does not consider a very common characteristic (skewed
distribution) of the stream data and therefore, both the processing
and load shedding of the stream data can be suboptimal.

Our approach:
We present a generic caching approach that can be used as a
front-stage with any semi-stream join algorithm in order to optimize
the processing of skewed stream data.
we present a novel, selective load shedding technique which sheds
the fraction of the stream that is most expensive to join.

eResearch NZ 2016 (Queenstown)

2/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

At a Glance

Research issues in Processing of Semi-Stream Data:
Processing of semi-stream data with different arrival rates under
limited memory. For example joining of fast stream of source updates
with a slow disk-based master data in real-time data warehousing.
Processing and load shedding of skewed stream data efficiently.

Existing approach:
Mesh Join (MESHJOIN) is a well known approach in this context.
MESHJOIN does not consider a very common characteristic (skewed
distribution) of the stream data and therefore, both the processing
and load shedding of the stream data can be suboptimal.

Our approach:
We present a generic caching approach that can be used as a
front-stage with any semi-stream join algorithm in order to optimize
the processing of skewed stream data.
we present a novel, selective load shedding technique which sheds
the fraction of the stream that is most expensive to join.

eResearch NZ 2016 (Queenstown)

2/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Outline

1 Introduction and Motivation

2 Existing Approach

3 Our approach

4 Related Work

5 Conclusions

eResearch NZ 2016 (Queenstown)

3/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Introduction

Semi-stream join algorithms join a fast data stream with a
disk-based relation. For example in realtime data warehousing where
a stream of transactions is joined with master data before loading it
into a data warehouse.

The join is used to enrich the stream data with the master data.

A common type of join in this scenario is an equijoin which is
many-to-one type of join between foreign keys in the stream data
and primary key in the master data.

Usually available memory for the join algorithm is not large enough
to hold the whole disk-based master data.

Stream data is normally a skewed (non-uniform) distribution.

eResearch NZ 2016 (Queenstown)

4/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Motivation

ETL
Extraction

Transformation

Loading
Join

module

OLAP analysis

Reporting

Data mining

Data Warehouse
Data Sources

Master Data

End user’s

transactions in the

form of stream.

Transformed

data

product ID

quantity

date

warehouse key

product name

vendor name

date

total

warehouse key

product name

price

vendor name

Data arriving from data sources is huge in volume and fast while
access rate of the master data is slow.

Consequently there is a bottleneck in the transformation layer.

The stream data is skewed.

The stream arrival rate can be greater than the service rate of the
join algorithm.

eResearch NZ 2016 (Queenstown)

5/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Motivation

ETL
Extraction

Transformation

Loading
Join

module

OLAP analysis

Reporting

Data mining

Data Warehouse
Data Sources

Master Data

End user’s

transactions in the

form of stream.

Transformed

data

product ID

quantity

date

warehouse key

product name

vendor name

date

total

warehouse key

product name

price

vendor name

Data arriving from data sources is huge in volume and fast while
access rate of the master data is slow.

Consequently there is a bottleneck in the transformation layer.

The stream data is skewed.

The stream arrival rate can be greater than the service rate of the
join algorithm.

eResearch NZ 2016 (Queenstown)

5/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Motivation

ETL
Extraction

Transformation

Loading
Join

module

OLAP analysis

Reporting

Data mining

Data Warehouse
Data Sources

Master Data

End user’s

transactions in the

form of stream.

Transformed

data

product ID

quantity

date

warehouse key

product name

vendor name

date

total

warehouse key

product name

price

vendor name

Data arriving from data sources is huge in volume and fast while
access rate of the master data is slow.

Consequently there is a bottleneck in the transformation layer.

The stream data is skewed.

The stream arrival rate can be greater than the service rate of the
join algorithm.

eResearch NZ 2016 (Queenstown)

5/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Motivation

ETL
Extraction

Transformation

Loading
Join

module

OLAP analysis

Reporting

Data mining

Data Warehouse
Data Sources

Master Data

End user’s

transactions in the

form of stream.

Transformed

data

product ID

quantity

date

warehouse key

product name

vendor name

date

total

warehouse key

product name

price

vendor name

Data arriving from data sources is huge in volume and fast while
access rate of the master data is slow.

Consequently there is a bottleneck in the transformation layer.

The stream data is skewed.

The stream arrival rate can be greater than the service rate of the
join algorithm.

eResearch NZ 2016 (Queenstown)

5/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Motivation

ETL
Extraction

Transformation

Loading
Join

module

OLAP analysis

Reporting

Data mining

Data Warehouse
Data Sources

Master Data

End user’s

transactions in the

form of stream.

Transformed

data

product ID

quantity

date

warehouse key

product name

vendor name

date

total

warehouse key

product name

price

vendor name

Data arriving from data sources is huge in volume and fast while
access rate of the master data is slow.

Consequently there is a bottleneck in the transformation layer.

The stream data is skewed.

The stream arrival rate can be greater than the service rate of the
join algorithm.

eResearch NZ 2016 (Queenstown)

5/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

MESHJOIN

A wellknown algorithm MESHJOIN1 has been introduced in this
area.

Implements many-to-one equijoin which is norm in the scenario of
data warehousing.

Designed for joining a stream S with the disk-based master data R.

Retrieves R sequentially and therefore assumes no index on R.

Can cope with limited memory.

1Polyzotis et al., IEEE Transaction on Knowledge and Data Engineering, July,
2008.

eResearch NZ 2016 (Queenstown)

6/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Components of MESHJOIN

Disk-buffer

Disk-based

Master Data

R

Stream-buffer

Stores the group of disk-

pages that are probed into

hash table while join is

executing

Stores some of the incoming

stream tuples for a while

Stores all the stream

tuples that are being

processed

Keeps record of tuples in hash table with respect to time Stream

S

Hash

table

Queue

tuples=hS

eResearch NZ 2016 (Queenstown)

7/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

MESHJOIN Operation

R1

R2

R3

R4

www w

R2

(R3)

(R4)

(R1)

(R4)

(R1)(R1)

Disk-buffer

Stream

S Partition

Queue

Disk-based relation R

Disk partitions

already

joined with

the hash table

Hash

table

Stream-

buffer

Hash

function

Size of disk-buffer = one disk partition

Iterations required to bring all of R into memory = k (in this example k=4)

tuples in stream-buffer = # pointers in one queue partition=
k

h
w S

Read sequentially

&

cyclically

Total # tuples in hash table =hS

eResearch NZ 2016 (Queenstown)

8/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Issues with MESHJOIN

Skewed distribution is a common characteristic of
real world data e.g. in many markets some
products are bought with higher frequency1.

MESHJOIN makes no assumptions about data
distribution or the organization of the master
data.

Experiments of MESHJOIN have shown that the
algorithm performs worse with skewed data than
with uniform data.

Load shedding approach used in MESHJOIN is
suboptimal.

1Anderson, C., The Long Tail: Why the Future of Business is Selling Less of More.,
Hyperion, 2006.

eResearch NZ 2016 (Queenstown)

9/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Our Optimization Approaches

As a solution we present two optimization approaches.

1 A novel caching approach that works as a generic front-stage for
existing semi-stream join algorithms.

The new front-stage uses a tuple-level rather than a page-level cache.
The front stage significantly improves join service rate for skewed
data.
We tested our front-stage with three different well known
semi-stream join algorithms.
We provide experimental results to demonstrate the benefits of the
approach.

2 A novel load shedding approach.
Contrary to the existing approach our approach sheds the tuples
which are expensive to join.
In our approach load shedding increase the service rate which is not
the case in the existing approach.
We provide experimental data with significant improvement in
service rate.

eResearch NZ 2016 (Queenstown)

10/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Our Optimization Approaches

As a solution we present two optimization approaches.

1 A novel caching approach that works as a generic front-stage for
existing semi-stream join algorithms.

The new front-stage uses a tuple-level rather than a page-level cache.
The front stage significantly improves join service rate for skewed
data.
We tested our front-stage with three different well known
semi-stream join algorithms.
We provide experimental results to demonstrate the benefits of the
approach.

2 A novel load shedding approach.
Contrary to the existing approach our approach sheds the tuples
which are expensive to join.
In our approach load shedding increase the service rate which is not
the case in the existing approach.
We provide experimental data with significant improvement in
service rate.

eResearch NZ 2016 (Queenstown)

10/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Caching Approach

Applied on MESHJOIN (Mesh Join) – renamed with CMESHJOIN
(Cached Mesh Join)

If not matched Stream
buffer
(SB2)

Stream
buffer
(SB1)

Frequency
manipulation

Output
.	 	
.	

Disk-based
master data

R

Disk buffer

Queue

Hash

function

Hash table (HR)
contains frequent

disk tuples

Hash table (HS)
contains stream

If matched

Stream

S

If frequency ≥ threshold value,
switch this tuple to HR.

front-stage
phase MESHJOIN

phase

Frequency recorder

wB	 	 .	 .	 .	 wB	 wB	 wB	 Hash
function

Master data on disk

Fr
eq

ue
nc

y
in

 s
tre

am

Part of master data

resides in the front-stage.

eResearch NZ 2016 (Queenstown)

11/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Caching Approach

Applied on HYBRIDJOIN (Hybrid Join) – renamed with CHYBRIDJOIN
(Cached Hybrid Join)

If not matched

Stream

buffer

(SB2)

Frequency recorder

Queue . . . tm t1 t3 t2

HYBRIDJOIN

phase

Frequency

manipulation

Output
.
.

Disk-based

master data

R

Disk buffer

Stream

buffer

(SB1)

Hash table (HR)

contains frequent

disk tuples

Hash table (HS)

contains stream

If matched

Stream

S
Hash

function

If frequency ≥ threshold

value, switch this tuple to HR.

front-stage

phase

Hash

function

eResearch NZ 2016 (Queenstown)

12/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Caching Approach

Applied on INLJ (Index Nested Loop Join) – renamed with CINLJ
(Cached Index Nested Loop Join)

Stream

buffer

(SB2)

output
If not matched

Stream

buffer

(SB1)

Frequency

manipulation

Hash table (HR)

contains frequent

disk tuples

If matched

If frequency ≥ threshold

value, switch this tuple to HR

Hash

function

Stream

S

Disk-based

master data

R

 Temporary buffer (Tb)
stores join attribute values of

stream and refreshes periodically

front-stage

phase
INLJ

phase

Frequency

recorder

INLJ

eResearch NZ 2016 (Queenstown)

13/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Experimental Evaluation

Setup

Hardware specifications: Core i5, 8GB main memory, 500GB hard
drive

Allocated memory: 1% of R (0.11GB) to 10% of R (1.12GB)

Data set:
Disk-based data

Size of R, 100 million tuples (11.2GB)
Size of each tuple, 120 bytes (Similar to MESHJOIN)

Stream data

Size of each tuple, 20 bytes (Similar to MESHJOIN)
Size of each pointer in queue, 4 bytes in CMESHJOIN while 12 bytes
in CHYBRIDJOIN
Based on Zipf’s Law with skew value from 0 to 1

Evaluation metrics: We calculate confidence interval by considering
95% accuracy rate.

eResearch NZ 2016 (Queenstown)

14/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Experimental Evaluation
Service rate vs memory (R≈11.2G, Skew=1)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Allocated memory (in %age of R)

Se
rv

ice
 ra

te
 (t

up
le

s/
se

c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Service rate vs size of R (M≈1.12G, Skew=1)

20 40 60 80 100
0

2

4

6

8

10

12

14
x 10

4

Tuples (in millions)

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

CMESHJOIN

MESHJOIN

CHYBRIDJOIN

HYBRIDJOIN

Service rate vs skew (R≈11.2G, M≈1.12G)

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

Skew

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
MESHJOIN
CHYBRIDJOIN
HYBRIDJOIN

Role of the front-stage (R≈11.2G, Skew=1)

S
tr

ea
m

 tu
pl

es
 p

ro
ce

ss
ed

 th
ro

ug
h

th
e

fr
on

t-
st

ag
e

(a
bo

ut
 5

1%
 o

f t
ot

al
)

eResearch NZ 2016 (Queenstown)

15/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Experimental Evaluation
Service rate vs memory (R≈11.2G, Skew=1)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Allocated memory (in %age of R)

Se
rv

ice
 ra

te
 (t

up
le

s/
se

c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Service rate vs size of R (M≈1.12G, Skew=1)

20 40 60 80 100
0

2

4

6

8

10

12

14
x 10

4

Tuples (in millions)

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

CMESHJOIN

MESHJOIN

CHYBRIDJOIN

HYBRIDJOIN

Service rate vs skew (R≈11.2G, M≈1.12G)

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

Skew

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
MESHJOIN
CHYBRIDJOIN
HYBRIDJOIN

Role of the front-stage (R≈11.2G, Skew=1)

S
tr

ea
m

 tu
pl

es
 p

ro
ce

ss
ed

 th
ro

ug
h

th
e

fr
on

t-
st

ag
e

(a
bo

ut
 5

1%
 o

f t
ot

al
)

eResearch NZ 2016 (Queenstown)

15/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Experimental Evaluation
Service rate vs memory (R≈11.2G, Skew=1)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Allocated memory (in %age of R)

Se
rv

ice
 ra

te
 (t

up
le

s/
se

c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Service rate vs size of R (M≈1.12G, Skew=1)

20 40 60 80 100
0

2

4

6

8

10

12

14
x 10

4

Tuples (in millions)

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

CMESHJOIN

MESHJOIN

CHYBRIDJOIN

HYBRIDJOIN

Service rate vs skew (R≈11.2G, M≈1.12G)

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

Skew

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
MESHJOIN
CHYBRIDJOIN
HYBRIDJOIN

Role of the front-stage (R≈11.2G, Skew=1)

S
tr

ea
m

 tu
pl

es
 p

ro
ce

ss
ed

 th
ro

ug
h

th
e

fr
on

t-
st

ag
e

(a
bo

ut
 5

1%
 o

f t
ot

al
)

eResearch NZ 2016 (Queenstown)

15/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Experimental Evaluation
Service rate vs memory (R≈11.2G, Skew=1)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Allocated memory (in %age of R)

Se
rv

ice
 ra

te
 (t

up
le

s/
se

c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Service rate vs size of R (M≈1.12G, Skew=1)

20 40 60 80 100
0

2

4

6

8

10

12

14
x 10

4

Tuples (in millions)

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

CMESHJOIN

MESHJOIN

CHYBRIDJOIN

HYBRIDJOIN

Service rate vs skew (R≈11.2G, M≈1.12G)

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

Skew

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
MESHJOIN
CHYBRIDJOIN
HYBRIDJOIN

Role of the front-stage (R≈11.2G, Skew=1)

S
tr

ea
m

 tu
pl

es
 p

ro
ce

ss
ed

 th
ro

ug
h

th
e

fr
on

t-
st

ag
e

(a
bo

ut
 5

1%
 o

f t
ot

al
)

eResearch NZ 2016 (Queenstown)

15/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Experimental Evaluation
TPCH dataset (R≈20 million tuples)

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

Allocated memory (in %age of R)

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Real-life dataset (R≈20 million tuples)

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

Allocated memory (in %age of R)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Processing time (M≈1.12G, Skew=1)

20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Size of R (tuples in millions)

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

fo
r e

ac
h

st
re

am
 tu

pl
e

(m
in

ut
es

)

MESHJOIN
HYBRIDJOIN
CHYBRIDJOIN
CMESHJOIN

Cost validation (R≈11.2G, Skew=1)

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Allocated memory (in %age of R)

P
ro

ce
ss

in
g

co
st

 (
se

cs
)

CHYBRIDJOIN measured
CHYBRIDJOIN calculated
CMESHJOIN measured
CMESHJOIN calculated
CINLJ measured
CINLJ calculated
INLJ measured
INLJ calculated

eResearch NZ 2016 (Queenstown)

16/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Experimental Evaluation
TPCH dataset (R≈20 million tuples)

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

Allocated memory (in %age of R)

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Real-life dataset (R≈20 million tuples)

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

Allocated memory (in %age of R)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Processing time (M≈1.12G, Skew=1)

20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Size of R (tuples in millions)

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

fo
r e

ac
h

st
re

am
 tu

pl
e

(m
in

ut
es

)

MESHJOIN
HYBRIDJOIN
CHYBRIDJOIN
CMESHJOIN

Cost validation (R≈11.2G, Skew=1)

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Allocated memory (in %age of R)

P
ro

ce
ss

in
g

co
st

 (
se

cs
)

CHYBRIDJOIN measured
CHYBRIDJOIN calculated
CMESHJOIN measured
CMESHJOIN calculated
CINLJ measured
CINLJ calculated
INLJ measured
INLJ calculated

eResearch NZ 2016 (Queenstown)

16/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Experimental Evaluation
TPCH dataset (R≈20 million tuples)

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

Allocated memory (in %age of R)

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Real-life dataset (R≈20 million tuples)

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

Allocated memory (in %age of R)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Processing time (M≈1.12G, Skew=1)

20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Size of R (tuples in millions)

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

fo
r e

ac
h

st
re

am
 tu

pl
e

(m
in

ut
es

)

MESHJOIN
HYBRIDJOIN
CHYBRIDJOIN
CMESHJOIN

Cost validation (R≈11.2G, Skew=1)

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Allocated memory (in %age of R)

P
ro

ce
ss

in
g

co
st

 (
se

cs
)

CHYBRIDJOIN measured
CHYBRIDJOIN calculated
CMESHJOIN measured
CMESHJOIN calculated
CINLJ measured
CINLJ calculated
INLJ measured
INLJ calculated

eResearch NZ 2016 (Queenstown)

16/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Experimental Evaluation
TPCH dataset (R≈20 million tuples)

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

Allocated memory (in %age of R)

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Real-life dataset (R≈20 million tuples)

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

Allocated memory (in %age of R)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

Processing time (M≈1.12G, Skew=1)

20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Size of R (tuples in millions)

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

fo
r e

ac
h

st
re

am
 tu

pl
e

(m
in

ut
es

)

MESHJOIN
HYBRIDJOIN
CHYBRIDJOIN
CMESHJOIN

Cost validation (R≈11.2G, Skew=1)

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Allocated memory (in %age of R)

P
ro

ce
ss

in
g

co
st

 (
se

cs
)

CHYBRIDJOIN measured
CHYBRIDJOIN calculated
CMESHJOIN measured
CMESHJOIN calculated
CINLJ measured
CINLJ calculated
INLJ measured
INLJ calculated

eResearch NZ 2016 (Queenstown)

16/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Sensitivity Analysis
Front-stage analysis

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Total allocated memory (% of R)

Se
rv

ice
 ra

te
 (t

up
le

s/
se

c)

15% front−stage (optimal)
5% front−stage
10% front−stage
25% front−stage
50% front−stage
75%front−stage
without front−stage

Threshold sensitivity analysis

2345678910
0

200

400

600

800

1000

1200

1400

Threshold value

T
up

le
s

pr
oc

es
se

d
th

ro
ug

h
th

e
fr

on
t−

st
ag

e
ph

as
e

Disk buffer size analysis

8 16 32 64 128 256 512 1024 2048 4096
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Disk buffer (# pages)
on log scale

S
er

vi
ce

 ra
te

 p
ro

du
ce

d
th

ro
ug

h
M

E
S

H
JO

IN
 p

ha
se

 (t
up

le
s/

se
c)

Changing the size of R online

400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9

10
x 10

4

iteration number

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

Size of R=100 million tuples

Refilling of front−stage
 cache

Size of R=50 million tuples

eResearch NZ 2016 (Queenstown)

17/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Sensitivity Analysis
Front-stage analysis

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Total allocated memory (% of R)

Se
rv

ice
 ra

te
 (t

up
le

s/
se

c)

15% front−stage (optimal)
5% front−stage
10% front−stage
25% front−stage
50% front−stage
75%front−stage
without front−stage

Threshold sensitivity analysis

2345678910
0

200

400

600

800

1000

1200

1400

Threshold value

T
up

le
s

pr
oc

es
se

d
th

ro
ug

h
th

e
fr

on
t−

st
ag

e
ph

as
e

Disk buffer size analysis

8 16 32 64 128 256 512 1024 2048 4096
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Disk buffer (# pages)
on log scale

S
er

vi
ce

 ra
te

 p
ro

du
ce

d
th

ro
ug

h
M

E
S

H
JO

IN
 p

ha
se

 (t
up

le
s/

se
c)

Changing the size of R online

400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9

10
x 10

4

iteration number

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

Size of R=100 million tuples

Refilling of front−stage
 cache

Size of R=50 million tuples

eResearch NZ 2016 (Queenstown)

17/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Sensitivity Analysis
Front-stage analysis

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Total allocated memory (% of R)

Se
rv

ice
 ra

te
 (t

up
le

s/
se

c)

15% front−stage (optimal)
5% front−stage
10% front−stage
25% front−stage
50% front−stage
75%front−stage
without front−stage

Threshold sensitivity analysis

2345678910
0

200

400

600

800

1000

1200

1400

Threshold value

T
up

le
s

pr
oc

es
se

d
th

ro
ug

h
th

e
fr

on
t−

st
ag

e
ph

as
e

Disk buffer size analysis

8 16 32 64 128 256 512 1024 2048 4096
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Disk buffer (# pages)
on log scale

S
er

vi
ce

 ra
te

 p
ro

du
ce

d
th

ro
ug

h
M

E
S

H
JO

IN
 p

ha
se

 (t
up

le
s/

se
c)

Changing the size of R online

400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9

10
x 10

4

iteration number

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

Size of R=100 million tuples

Refilling of front−stage
 cache

Size of R=50 million tuples

eResearch NZ 2016 (Queenstown)

17/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Sensitivity Analysis
Front-stage analysis

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Total allocated memory (% of R)

Se
rv

ice
 ra

te
 (t

up
le

s/
se

c)

15% front−stage (optimal)
5% front−stage
10% front−stage
25% front−stage
50% front−stage
75%front−stage
without front−stage

Threshold sensitivity analysis

2345678910
0

200

400

600

800

1000

1200

1400

Threshold value

T
up

le
s

pr
oc

es
se

d
th

ro
ug

h
th

e
fr

on
t−

st
ag

e
ph

as
e

Disk buffer size analysis

8 16 32 64 128 256 512 1024 2048 4096
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Disk buffer (# pages)
on log scale

S
er

vi
ce

 ra
te

 p
ro

du
ce

d
th

ro
ug

h
M

E
S

H
JO

IN
 p

ha
se

 (t
up

le
s/

se
c)

Changing the size of R online

400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9

10
x 10

4

iteration number

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

Size of R=100 million tuples

Refilling of front−stage
 cache

Size of R=50 million tuples

eResearch NZ 2016 (Queenstown)

17/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Load Shedding Approach

Stream arrival rate

Maximum service rate

for available memory

Service rate

line

Service

rate
shedding point

A novel and efficient load shedding technique particularly for skewed
semi-stream data.

Contrary to the existing approaches, only sheds those tuples which
are expensive to join.

Uses the existing architecture with minimum overhead.

As a consequence the service rate improves significantly.

eResearch NZ 2016 (Queenstown)

18/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Load Shedding Approach

Stream arrival rate

Maximum service rate

for available memory

Service rate

line

Service

rate
shedding point

A novel and efficient load shedding technique particularly for skewed
semi-stream data.

Contrary to the existing approaches, only sheds those tuples which
are expensive to join.

Uses the existing architecture with minimum overhead.

As a consequence the service rate improves significantly.

eResearch NZ 2016 (Queenstown)

18/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Load Shedding Approach

Stream arrival rate

Maximum service rate

for available memory

Service rate

line

Service

rate
shedding point

A novel and efficient load shedding technique particularly for skewed
semi-stream data.

Contrary to the existing approaches, only sheds those tuples which
are expensive to join.

Uses the existing architecture with minimum overhead.

As a consequence the service rate improves significantly.

eResearch NZ 2016 (Queenstown)

18/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Load Shedding Approach

Stream arrival rate

Maximum service rate

for available memory

Service rate

line

Service

rate
shedding point

A novel and efficient load shedding technique particularly for skewed
semi-stream data.

Contrary to the existing approaches, only sheds those tuples which
are expensive to join.

Uses the existing architecture with minimum overhead.

As a consequence the service rate improves significantly.

eResearch NZ 2016 (Queenstown)

18/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Load Shedding Approach

Stream arrival rate

Maximum service rate

for available memory

Service rate

line

Service

rate
shedding point

A novel and efficient load shedding technique particularly for skewed
semi-stream data.

Contrary to the existing approaches, only sheds those tuples which
are expensive to join.

Uses the existing architecture with minimum overhead.

As a consequence the service rate improves significantly.

eResearch NZ 2016 (Queenstown)

18/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Reconsidering of CHYBRIDJOIN

If not matched

Stream

buffer

(SB2)

Frequency recorder

Queue . . . tm t1 t3 t2

HYBRIDJOIN

phase

Frequency

manipulation

Output
.
.

Disk-based

master data

R

Disk buffer

Stream

buffer

(SB1)

Hash table (HR)

contains frequent

disk tuples

Hash table (HS)

contains stream

If matched

Stream

S
Hash

function

If frequency ≥ threshold

value, switch this tuple to HR.

front-stage

phase

Hash

function

front 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% end
3000

4000

5000

6000

7000

8000

Position of index in the queue

Se
rv

ice
 ra

te
 (t

up
les

/se
c)

eResearch NZ 2016 (Queenstown)

19/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Experimental Evaluation

Queue optimization for load shedding

front 5% 10%15%20%25%30%35%40%45%50%55%60%65%70%75%80%85%90%95% end
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Positions of lookup element in the queue

S
e
rv

ic
e
 r

a
te

 (
tu

p
le

s/
se

c)

Service rate analysis under load shedding

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5
x 10

4

Time (in minutes)

S
er

vi
ce

 r
at

e
(t

u
pl

es
/s

ec
)

Stream arrival rate
CHYBRIDJOIN with tuned load shedding on network
CHYBRIDJOIN with tuned load shedding on disk
CHYBRIDJOIN with untuned load shedding
CHYBRIDJOIN using MESHJOIN load shedding technique
MESHJOIN with load shedding

eResearch NZ 2016 (Queenstown)

20/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Experimental Evaluation

Queue optimization for load shedding

front 5% 10%15%20%25%30%35%40%45%50%55%60%65%70%75%80%85%90%95% end
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Positions of lookup element in the queue

S
e
rv

ic
e
 r

a
te

 (
tu

p
le

s/
se

c)

Service rate analysis under load shedding

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5
x 10

4

Time (in minutes)

S
e
rv

ic
e
 r

a
te

 (
tu

p
le

s/
se

c)

Stream arrival rate
CHYBRIDJOIN with tuned load shedding on network
CHYBRIDJOIN with tuned load shedding on disk
CHYBRIDJOIN with untuned load shedding
CHYBRIDJOIN using MESHJOIN load shedding technique
MESHJOIN with load shedding

eResearch NZ 2016 (Queenstown)

20/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Related Work

1 Index Nested Loop Join (INLJ)1

2 MESHJOIN 2

3 Partition-based approach3

4 R-MESHJOIN 4

5 HYBRIDJOIN 5

6 Semi-Streamed Index Join 6

1R. Ramakrishnan et al., Database Management System, McGraw-Hill, Inc., 1999.
2N. Polyzotis et al., IEEE TKDE, 2008.
3A. Chakraborty et al., IPDPS, 2009.
4M. A. Naeem et al., DOLAP, 2010.
5M. A. Naeem et al., IJDWM, 2011.
6Mihaela A. Bornea et al., ICDE, 2011.

eResearch NZ 2016 (Queenstown)

21/23

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Conclusions

Existing algorithm MESHJOIN is suboptimal for processing of the
skewed semi-stream data.
The load shedding technique presented in MESHJOIN is inefficient.

We presented the following two major contributions:
Caching

Presented a generic cache module called front-stage.
Uses a tuple level cache.
Tested it with three wellknown algorithms.
Improved the service rate of the existing algorithms.

Load shedding
Presented an intelligent load shedding technique.
The new technique exploits the skew in stream data.
Contrary to the existing MESHJOIN our load shedding approach
improved the service rate.

We performed a sensitivity analysis with respect to various internal
parameters.
We validated our cost model empirically.
Source download:www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

eResearch NZ 2016 (Queenstown)

22/23

www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Conclusions

Existing algorithm MESHJOIN is suboptimal for processing of the
skewed semi-stream data.
The load shedding technique presented in MESHJOIN is inefficient.
We presented the following two major contributions:

Caching
Presented a generic cache module called front-stage.
Uses a tuple level cache.
Tested it with three wellknown algorithms.
Improved the service rate of the existing algorithms.

Load shedding
Presented an intelligent load shedding technique.
The new technique exploits the skew in stream data.
Contrary to the existing MESHJOIN our load shedding approach
improved the service rate.

We performed a sensitivity analysis with respect to various internal
parameters.
We validated our cost model empirically.
Source download:www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

eResearch NZ 2016 (Queenstown)

22/23

www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Conclusions

Existing algorithm MESHJOIN is suboptimal for processing of the
skewed semi-stream data.
The load shedding technique presented in MESHJOIN is inefficient.
We presented the following two major contributions:

Caching
Presented a generic cache module called front-stage.
Uses a tuple level cache.
Tested it with three wellknown algorithms.
Improved the service rate of the existing algorithms.

Load shedding
Presented an intelligent load shedding technique.
The new technique exploits the skew in stream data.
Contrary to the existing MESHJOIN our load shedding approach
improved the service rate.

We performed a sensitivity analysis with respect to various internal
parameters.
We validated our cost model empirically.
Source download:www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

eResearch NZ 2016 (Queenstown)

22/23

www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Conclusions

Existing algorithm MESHJOIN is suboptimal for processing of the
skewed semi-stream data.
The load shedding technique presented in MESHJOIN is inefficient.
We presented the following two major contributions:

Caching
Presented a generic cache module called front-stage.
Uses a tuple level cache.
Tested it with three wellknown algorithms.
Improved the service rate of the existing algorithms.

Load shedding
Presented an intelligent load shedding technique.
The new technique exploits the skew in stream data.
Contrary to the existing MESHJOIN our load shedding approach
improved the service rate.

We performed a sensitivity analysis with respect to various internal
parameters.
We validated our cost model empirically.

Source download:www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

eResearch NZ 2016 (Queenstown)

22/23

www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Conclusions

Existing algorithm MESHJOIN is suboptimal for processing of the
skewed semi-stream data.
The load shedding technique presented in MESHJOIN is inefficient.
We presented the following two major contributions:

Caching
Presented a generic cache module called front-stage.
Uses a tuple level cache.
Tested it with three wellknown algorithms.
Improved the service rate of the existing algorithms.

Load shedding
Presented an intelligent load shedding technique.
The new technique exploits the skew in stream data.
Contrary to the existing MESHJOIN our load shedding approach
improved the service rate.

We performed a sensitivity analysis with respect to various internal
parameters.
We validated our cost model empirically.
Source download:www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

eResearch NZ 2016 (Queenstown)

22/23

www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

Introduction and Motivation
Existing Approach

Our approach
Related Work

Conclusions

Thanks

eResearch NZ 2016 (Queenstown)

23/23

	Introduction and Motivation
	Existing Approach
	Our approach
	Related Work
	Conclusions

